In vitro Metabolism of 2-Chloro-10-(3-dimethylaminopropyl)-phenothiazine. III. Isolation and Identification of Metabolites

JOHN J. ROSS, JR., THOMAS L. FLANAGAN, AND ALFRED R. MAASS

Research and Development Division, Smith Kline & French Laboratories, Philadelphia 1, Pa.

Received March 22, 1962

The metabolism of 2-chloro-10-(3-dimethylaminopropyl)-phenothiazine by rat and rabbit liver homogenates was studied. Three metabolites of the -(N-methyl)-C¹⁴ or S³⁵ labeled drug were isolated and identified as C¹⁴O₂, HC¹⁴HO and 2-chloro-10-(3-methylaminopropyl)-phenothiazine-S³⁵.

The effects of various inhibitors upon the oxidation of chlorpromazine-(N-methyl)- C^{14} in the rat liver homogenate system were also investigated.

The demethylation of chlorpromazine (2-chloro-10-[3-dimethylaminopropyl]-phenothiazine hydrochloride) has been demonstrated *in vivo* in the rat¹ by showing that the methyl group of chlorpromazine-(N-methyl)-C¹⁴ was oxidized to carbon dioxide-C¹⁴ following oral or intravenous administration. These original findings were later extended by the demonstration that chlorpromazine-(N-methyl)-C¹⁴ was also metabolized *in vitro* to carbon dioxide-C¹⁴ by rat and rabbit liver homogenates.² Walkenstein and Seifter³ have reported that promazine-S³⁵ (10-[3-dimethylaminopropyl]-phenothiazine-S³⁵ hydrochloride) is likewise demethylated, by the dog, to the corresponding monomethyl and monomethylsulfoxide derivatives.

The present communication reports the isolation and identification of formaldehyde-C¹⁴ and 2-chloro-10-(3-methylaminopropyl)-phenothiazine-S³⁵ as products of the *in vitro* metabolism of chlorpromazine labeled with the appropriate radioactive isotope. In addition, the ability of several tissues to metabolize chlorpromazine-(N-methyl)-C¹⁴, the cofactor requirements for rat liver homogenates and the effect of various metabolic inhibitors on the production of carbon dioxide-C¹⁴ and formaldehyde-C¹⁴ are reported.

Experimental

Adult, male Long Evans rats (225-250 g.), maintained on Purina laboratory chow, were sacrificed; the tissue was prepared, fortified and incubated as

⁽¹⁾ J. J. Ross, Jr., R. L. Young, and A. R. Maass. Science, 128, 1279 (1958).

⁽²⁾ R. L. Young, J. J. Ross, Jr., and A. R. Maass. Nature, 183, 1396 (1959).

⁽³⁾ S. S. Walkenstein and J. Seifter, J. Pharmacol. Exptl. Therap., 125, 283 (1959).

previously described⁴ except that 0.12 μ mole of glucose-6-phosphate was substituted for glucose-1,6-diphosphate.

The formaldehyde-C¹⁴ present in the mixture at the termination of the incubation was isolated as the dimethyl-dehydroresorcinol derivative (formaldemethone) according to the method of Mackenzie.⁵ The formaldemethone-C¹⁴ was recrystallized to constant specific activity from hot ethanol and counted on a liquid scintillation spectrometer in toluene containing 0.4% of 2,5-diphenyloxazole.

For the isolation and identification of the monomethyl homolog of chlorpromazine, the S³⁵-labeled drug was used instead of chlorpromazine-(N-methyl)-C¹⁴. The trichloroacetic acid supernatant obtained after incubation of chlorpromazine-S³⁵ with rat liver homogenates in the standard media was adjusted to pH 13 with NaOH and extracted 4 times with diethyl ether. The ether extracts were combined and evaporated to dryness under nitrogen. The residues were taken up in methanol and chromatographed on Whatman No. 1 filter paper in a 3:1:4:2(v./v.) mixture of ethylene dichloride, benzene, formic acid (88%) and water by the descending technique for 16 hr.⁶ The radioactive material at $R_{\rm f}$ 0.85, which corresponded to the $R_{\rm f}$ of authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine, was eluted from the chromatogram with a mixture of absolute methanol and 0.1 N HCl (5:1 v./v.). This eluent was evaporated to dryness under nitrogen, and the residue was dissolved in absolute ethanol. An aliquot of this solution was chromatographed in the ethylene dichloride solvent system concurrently with an aliquot of authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine which had been eluted from a chromatogram and otherwise treated in the same manner. Both chromatograms yielded one spot, $R_{\rm f}$ 0.07, which corresponded to authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide, indicating that the phenothiazine was oxidized to the sulfoxide during the extraction and subsequent chromatography.

Authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide (100 mg.) was added to the ethanolic HCl extract, obtained as above, next 3 ml. of 1% NaOH solution and 5 ml. of a 3% solution (w./v.) of *p*-phenylazobenzenesulfonyl chloride in absolute alcohol. The mixture was heated on a steam bath for 30 min. with occasional stirring. An orange, gummy residue formed on the bottom of the reaction flask. The supernatant liquid was discarded; it contained no radioactivity. The residue was dissolved in 25 ml. of hot, absolute ethanol and then allowed to crystallize from this solution overnight at -6° . The resulting orange, needle-like crystals were filtered, washed with cold absolute ethanol and dried for 16 hr. in a vacuum desiccator; yield, 47%. A portion was counted in the liquid scintillation spectrometer. The product then was recrystallized to constant specific activity from hot ethanol. The labeled derivative was subjected to infrared spectral analysis, and its spectrum was compared with the infrared spectrum of the *p*-phenylazobenzenesulfonamido derivative of authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide.

Discussion and Results

The enzyme system mediating the demethylation of chlorpromazine-(N-methyl)-C¹⁴ requires the presence of oxygen, glucose-6-

- (4) G. C. Mueller and J. A. Miller, J. Biol. Chem., 202, 579 (1953).
- (5) C. G. Mackenzie. J. Biol. Chem., 186, 351 (1950).
- (6) I. B. Eisdorfer and W. C. Ellenbogen, J. Chromatog., 4, 329 (1960).

TABLE I

Metabolism of Chlorpromazine-(N-methyl)-C¹⁴ to C¹⁴O₂ by Homogenates of Various Rat Tissues

Tissue tested in standard incubation mixture	Substrate-C ¹⁴ metabolized to $C^{14}O_2 m \mu mole$
Liver ^a	3.02
Kidney	0.025
Brain	0.004
Lung	0.295
Boiled rat liver homogenate	0.311
Reagent control ^b	0.005

 $^{\circ}$ Contained 4.3 mµmole chlorpromazine-(N-methyl)-C¹⁴. b Standard incubation mixture without tissue homogenate.

The Effect of Substrate Level on the Extent of <i>in vitro</i> Metabolism of Chlorpromazine-C ¹⁴ to C ¹⁴ O ₂		
Mµmole chlorpromazine-C ¹⁴ incubated	Mµmole chlorpromazine-C ¹⁴ metabolized to C ¹⁴ O ₂	
2.2	0.74	
4.3	1.79-4.24	
22.0	7.34	
280	126.3 - 147.3	
363	$110\ 2-124.1$	
385	123.2	
2650	228.2	

phosphate (C-6-PO₄), diphosphopyridine nucleotide (DPN), triphosphopyridine nucleotide (TPN), nicotinamide, adenosine-triphosphate (ATP), and MgCl₂, for optimal activity. In agreement with the demethylation studies of Mueller and Miller⁴ only the liver, of the tissues tested, actively demethylated chlorpromazine-(Nmethyl)-C¹⁴ under the conditions of the incubation (Table I). In this experiment the concentration of chlorpromazine-C¹⁴ in the incubation mixture was one hundredth that in subsequent experiments. However, in the range of 2 to 385 mµmoles of chlorpromazine-(Nmethyl)-C¹⁴, in a total volume of 2.4 ml., the substrate concentration appeared to have little effect upon the amount of chlorpromazine-C¹⁴ converted to carbon dixoide-C¹⁴ (Table II).

At the lower substrate concentrations (2.2 and 4.3 mµmoles), the percentage of the chlorpromazine-(N-methyl)-C¹⁴ converted to C¹⁴O₂ varied between 30 and 100. Between 22 and 385 mµmole of chloropromazine-C¹⁴ per incubation, the recovery of C¹⁴O₂ from the demethylation of the labeled methyl group fell consistently between 30 to 50% of the incubated drug, but when 2650 mµmoles of sub-

TABLE II

1037

TABLE III

Recrystallization of the Dimethyldehydroresorcinol Derivative of Formaldehyde-C14 to Constant Specific Activity

	Rat liver homogenate		-Rabbit liver homogenates-	
		Specific		Specific
Crystelli-	Total act.,	radioactivity,	Total act.,	radioactivity,
zation	epm.	cpm./mg.	cpm.	epm./mg.
1	5179	117.7	20043	260.3
2	1246	18.5	8723	147.1
3	528	20.7	5338	116.8
4	490	20.6	4037	117.7

strate were incubated under standard conditions the extent of demethylation as measured by $C^{14}O_2$ liberation was only 8%. The data would seem to indicate that the optimum substrate level for maximum demethylation of chlorpromazine-(N-methyl)- C^{14} to $C^{14}O_2$ lay in the range of 280 mµmole of the drug. Further studies were not performed to establish this point more precisely.

The several reports in the literature that formaldehyde is an intermediate in the conversion of the methyl group of aliphatic monoand dimethylamines to carbon dioxide by rabbit, rat and guinea pig liver homogenates^{4,5,7} prompted us to search for formaldehyde-C¹⁴ as a metabolite of chlorpromazine-(N-methyl)-C¹⁴ by rat and rabbit liver homogenates. The formaldehyde-C¹⁴ was isolated as the dimethyldehydroresorcinol derivative and recrystallized to a constant specific activity (Table III).

 β -Diethylaminoethyl diphenylpropylacetate hydrochloride (SK&F 525-A) which has been reported to inhibit amine demethylation,⁸ inhibited the conversion of chlorpromazine-(N-methyl)-C¹⁴ to C¹⁴O₂ and also increased the amount of HC¹⁴HO isolated from the rat and rabbit liver homogenates (Table IV). Aminopterin, which is a potent competitive inhibitor of 1 carbon transfer reactions, also markedly reduced the metabolism of chlorpromazine-C¹⁴ to C¹⁴O₂, suggesting that formyl- or hydroxymethyl-tetrahydrofolic acid may be involved in the demethylation procedure.⁸

Following the suggestion of Mueller and Miller⁴ that sulfhydryl groups may be involved in the demethylation reaction, it was found that glutathione and cysteine also reduced the formation of $C^{14}O_2$. Glutathione, 6.8×10^{-3} molar, almost completely inhibited the production of $C^{14}O_2$ when incubated in the standard rat liver homogenate with chlorpromazine-(N-methyl)- C^{14} . However, the accumulation of HC¹⁴HO was increased four-fold over the control incubation

⁽⁷⁾ B. N. La Du, L. Gaudette, N. Trousof, and B. B. Brodie, J. Biol. Chem., 214, 741 (1955).

⁽⁸⁾ F. M. Huennekens, M. J. Osborn, and H. R. Whitley, Science, 128, 120 (1958).

September, 1962

HE EFFECT	OF INHIBITORS ON T	HE IN VILTO META	BOLISM OF CHL	ORPROMAZINE
Species	Inhibitor	Molar conc en tration of inhibitor	Substrate-C ¹⁴ metabolized to $C^{14}O_2$ mµmole	Substrate-C ¹⁴ metabolized to HC ¹⁴ HO mµmole
Rat^{a}	SK&F 525-A	None	118.5	0.6
		1×10^{-2}	0.7	6.8
		1×10^{-3}	0.8	3.4
		$2 imes10^{-4}$	2.8	2.6
\mathbf{Rabbit}^{\flat}	SK&F 525-A	None	130.1	4.9
		1×10^{-2}	99.8	6.9
Rat ^a	Aminopterin	None	118.5	0.6
	-	1×10^{-7}	1.5	4.1
\mathbf{Rabbit}^{b}	Aminopterin	None	130.1	4.9
	-	1×10^{-7}	1.2	13.8
Rat^{a}	Control	None	118.5	0.6
	Glutathione	6.8×10^{-3}	0.003	2,6
	Cysteine	$6.7 imes 10^{-3}$	0.2	7.3

TABLE IV

T

^a Substrate concentration was 363 mµmole. ^b Substrate concentration was 294 mµmole.

(Table IV). Cysteine at levels equivalent to that of glutathione $(6.7 \times 10^{-3} \text{ molar})$ also markedly inhibited the production of C¹⁴O₂ and increased the formation of HC¹⁴HO (Table IV). Mueller and Miller⁴ reported this type of phenomenon when 3-methyl-4-monoethylaminoazobenzene was incubated under these conditions. They postulate that glutathione effectively trapped a hydroxymethyl intermediate as a mercaptal derivative during the oxidation of the N-methyl group. The present data indicate that the mechanism for the inhibition of demethylation of 3-methyl-4-monoethylaminoazobenzene by glutathione may also apply to the demethylation of chlorpromazine-C¹⁴.

The initial experiments to isolate the primary or secondary amine metabolites of chlorpromazine using the N-methyl-C¹⁴ form of the drug were unsuccessful. The loss of the C¹⁴ label during the incubation added to the difficulties of the isolation. Therefore, chlorpromazine-S³⁵ was incubated with standard rat liver homogenates and the S³⁵-labeled metabolites of the drug were extracted from the incubation mixture. 2-Chloro-10-(3-methylaminopropyl)-phenothiazine-S³⁵ was isolated and tentatively identified by chromatography (Figure 1). The radioactive spot corresponding to 2-chloro-10-(3-methylaminopropyl)-phenothiazine-S³⁵ was eluted from the chromatogram, and treated with *p*-toluenesulfonyl chloride to form the amido derivative. All attempts to form this derivative with material eluted from the

Fig. 1.—Paper chromatogram of S³⁵-labeled metabolite of chlorpromazine-S³⁵ extracted from standard rat liver homogenate incubation. The R_f of the peaks in order from the origin are, 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide, 2-chloro-10-(3-dimethylaminopropyl)-phenothiazine-5-oxide, and 2-chloro-10-(3-methylaminopropyl)-phenothiazine and these correspond to peaks obtained with authentic samples of these same compounds.

Fig. 2.—Infrared spectra of the *p*-phenylazobenzenesulfonamido derivatives of 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide. Spectrum A was obtained from the derivative prepared from authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide. Spectrum B was obtained from the derivative prepared from the oxidized S³⁵-labeled metabolite isolated from the standard rat liver homogenate incubation of chlorpromazine-S³⁵ by extraction and paper chromatography.

chromatogram failed. It was then found that small quantities of authentic 2-chloro-10-(3-methylaminopropyl)-phenothiazine, when eluted from a chromatogram with acidic methanol, were oxidized to 2-chloro-10-(3-methylaminopropyl)-phenothiazine-5-oxide, which did not undergo the p-toluenesulfonyl chloride reaction to form

RECRYSTALLIZATION OF THE *p*-PHENYLAZOBENZENESULFONYLAMIDE TO 2-CHLORO-10-(3-METHYLAMINOPROPYL)-PHENOTHIAZINE-5-OXIDE-S³⁵ TO CONSTANT SPECIFIC ACTIVITY Total Specific activity, radioactivity Crystallization cpm. cpm./mg.

TABLE V

	activity,	radioactivity
rystallization	cpm.	cpm./mg.
1	731	9.2
2	630	9.0
3	556	9.0

the desired derivative; however the oxide did react to form the p-phenylazobenzenesulfonamido derivative. This derivative was therefore recrystallized to constant specific activity (Table V) and identified by infrared spectroscopy.

The infrared spectrum of the p-phenylazobenzenesulfonamide derivative prepared from authentic 2-chloro-10-(3-methylamino-propyl)-phenothiazine and that obtained in these experiments were identical (Fig. 2).

Acknowledgments — The authors extend their thanks to Dr. W. L. Holmes for his interest and counsel throughout this project, to Dr. R. L. Young for his assistance in the early stages of these studies, to Dr. C. L. Zirkle for authentic samples of the requisite chemical intermediates, and to Dr. W. E. Thompson for the infrared spectral analysis.